推广 热搜: 电解铝  铝合金  阳极氧化  氧化  热处理  工艺  铝及铝合金  技术  铝土矿  铝材加工 
 

我国铝矾土开发均化应用现状分析

   日期:2016-04-22     来源:网络    浏览:4880    评论:0    
  我国已探明高铝矾土储量为25亿吨,占世界总储量的2.4%,为世界上储量最多的国家之一。目前,我国高铝矾土熟料的生产仍以煅烧天然块料为主。相比高铝矾土熟料,矾土均化料采取均化、提纯等技术,生产工艺更加节能、环保,同时可以确保产品质量的稳定性。这两种矾土原料各有优劣。正确认识两种矾土原料的差异,合理利用各自的优势,研发优质合成材料,是目前矾土均化料研究中亟待解决的问题。对此,有研究人员通过深入分析两种原料的性能及其显微结构中的结晶物相和晶体发育情况来揭示它们之间的差异,从而更合理地认识并应用矾土均化料。

  对比试验为分析提供科学依据

  试验采用的原料有两种:一种是高铝矾土熟料,是将开采的矾土矿经过选矿后进入竖窑中煅烧1550℃~1600℃后得到的熟料。另一种是矾土均化料,是将开采的矾土矿经过选矿、破碎、研磨、造粒、成型、烘干、煅烧(1560℃~1600℃)制得的熟料。采用X射线荧光仪分析高铝矾土熟料和矾土均化料的化学组成,采用 GB/T2997—2000检测体积密度和显气孔率,采用X射线衍射仪分析相组成,采用扫描电镜进行显微结构分析,采用透射电镜进行透射光显微结构分析。

  观察分析证实矾土材料应用价值

  理化性能分析。高铝矾土熟料外观呈淡灰色和黄白色相间,重而硬;矾土均化料外观呈均匀的深灰色。从理化性能检测结果可看出:两种原料的化学组成差别不大,Al2O3质量分数都在80%以上,且根据Al2O3含量和SiO2含量的比值可知,理论上两种原料的物相均为刚玉相和莫来石相;不同之处是矾土均化料的致密度比高铝矾土熟料的大。

  物相分析。从高铝矾土熟料和矾土均化料的XRD图谱可以看出,两种矾土原料出现衍射峰的角度位置基本一致,且主晶相都是刚玉相,次晶相都是莫来石相,只是相同衍射峰角的峰强略有不同。

  显微结构分析。研究人员首先以不同放大倍数观察两种原料的显微结构,通过在低倍下对两种矾土原料的扫描电镜照片观察发现,高铝矾土熟料的晶体分布不均匀,还可见定向烧成裂纹;而矾土均化料的晶粒大小和分布都较均匀,还可见小而均匀的封闭气孔。在低倍数下比较观察,矾土均化料的晶粒和气孔尺寸均大于高铝矾土熟料,而高铝矾土熟料的气孔在此倍数下还不能清楚地看到。

  通过对两种矾土原料的扫描电镜照片的进一步放大(800倍)观察,从中可看出,高铝矾土熟料的不均匀性:图中上部分较致密,晶粒较小;而下部深色区域气孔较多且主要为开口气孔,晶粒较大。对放大照片的各部分进行EDS分析可知,绝大部分位置都是刚玉相,说明该区域是刚玉相的富集区;白色亮点区域为钛酸钙等物质。通过进一步观察可见,矾土均化料的结构相对致密,晶体分布较均匀,晶体中含有的气孔主要为闭口气孔,降低了材料的吸水率。矾土均化料中含Ti、 Fe的玻璃相(白色部分)明显多于高铝矾土熟料,且均匀分布在晶粒与晶粒之间。由于玻璃相在高温下能促进烧结,因此矾土均化料的晶粒明显生长得更大,结构也更致密。从EDS分析可知,玻璃相的成分主要为TiO2、Fe2O3、CaO、MgO、KO2等。

  鉴于中国铝土矿矿床成因及赋存地质条件的原因,往往在同一矿层、同一区段,矿石的成分差别也较大。在400℃~1200℃,铝土矿中的水铝石和高岭石先后发生脱水反应,水铝石脱水形成刚玉假相,高岭石分解为莫来石和游离SiO2。在1200℃下,从水铝石脱水形成的刚玉假相和高岭石分解出来的游离SiO2开始形成二次莫来石。在更高倍数(2000倍)下观察高铝矾土熟料,发现在水铝石富集的地方集中刚玉相,高岭石富集的地方集中莫来石相,或刚玉相和莫来石相紧密交错。这种结构可支撑材料承受外加载荷和高温,且玻璃相含量较少,因此其高温性能优越。而在相同倍数下观察矾土均化料,,就不能清晰地分辨出各个物相,也看不到交错集中的部位,而是整个显微结构变得均匀、一致,且玻璃相含量较多。

  由于矾土均化料中存在较多的均质性物质(硅酸盐玻璃相),在正交偏光下看不清楚结构细节。在透射电镜下单偏光拍摄了透射光照片,可看出高铝矾土熟料的不均匀性:刚玉晶体大小和分布都不均匀,玻璃相含量较少。从透射光照片中还可看出矾土均化料的均匀性:刚玉晶体大小和分布相对较均匀,玻璃相含量较多且分布均匀。

  随后,研究人员又通过对两种矾土原料的透射电镜照片(单偏光,400倍)的观察,从玻璃相的角度来总结两种原料显微结构的差异。以杂质成分TiO2在两种矾土原料中的分布为例来说明。高铝矾土熟料中TiO2的分布也同刚玉相一样呈现区域性富集。在高温下,富集的TiO2与Al2O3反应生成钛酸铝,只有少量分散的TiO2会进入刚玉晶格中形成很少量的玻璃相,当受到高温和外加应力时,致密集中的刚玉相起到支撑作用,表现出很好的高温性能,如抗冲刷、抗侵蚀、荷重软化温度高、蠕变小。但在矾土均化料中,TiO2的分布较均匀,高温下更容易进入刚玉晶格中形成大量的玻璃相,分布在刚玉晶粒之间,使晶间结合力减弱,高温下很容易发生滑移,从而影响其高温性能。

  应用分析。如果将矾土均化料以颗粒的形式做原料,或者加入以更多孤立相存在的Si3N4、SiC等非氧化物耐火材料中,就可以减少玻璃相对体系高温性能的影响,从而提高矾土均化料的使用价值。按照这一思路,研究人员研究了高铝矾土熟料和矾土均化料在镁铝碳材料中的应用情况。

  研究人员分别以高铝矾土熟料和矾土均化料为矾土骨料,按照上述的思路制成两组镁铝碳砖,并且比较了两组砖的常温和高温强度差异。经观察研究发现,以矾土均化料作为原料制成的镁铝碳砖的高温性能并没有被削弱,其高温抗折强度反而高于以高铝矾土熟料为原料的砖。这证实了均化料在矾土和非氧化物的复合材料中的使用价值和前景。

  综上所述,高铝矾土熟料的致密度不均匀,体积密度较低(3.32g/cm3),气孔率较高(4.19%),且多为开口气孔,吸水率高。但是,在其刚玉相致密集中或刚玉相和莫来石相紧密交错的部位,可以支撑其承受外加载荷和高温,加之玻璃相含量较少,因此其高温性能优越。

  矾土均化料的结构致密均匀,体积密度较高(3.42g/cm3),气孔率较低(0.84%),多为小而均匀的闭气孔,吸水率低。由于经过了均化工艺,均化料的成分和结构更均匀,但晶粒间填充了大量均匀分布的玻璃相,减弱了晶间结合力,在一定程度上削弱了均化料的高温性能。然而,将矾土均化料以颗粒的形式做原料,或者加入以更多孤立相存在的Si3N4、SiC等非氧化物耐火材料中,就可以减少玻璃相对体系高温性能的影响,提高其使用价值。因此,矾土均化料更适用于生产矾土和非氧化物的复合材料。

 
标签: 铝矾土 均化
打赏
 
更多>同类技术
0相关评论

推荐图文
推荐技术
点击排行

网站首页  |  铝材QQ群大全  |  大沥著名铝企  |  铝锭手机短信  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  RSS订阅  |  违规举报  |  粤ICP备18150991号  |