模具的模块化设计 缩短设计周期并提高设计质量是缩短整个模具开发周期的关键之一。模块化设计就是利用产品零部件
在结构及功能上的相似性,而实现产品的标准化与组合化。大量实践表明,模块化设计能有效减少产品设计时间并提高设计质量。因此本文探索在模具设计中运用模块化设计方法。 模具模块化设计的实施。
建立模块库 模块库的建立有三个步骤:
模块划分、构造特征模型和用户自定义特征的生成。标准零件是模块的特例,存在于模块库中。标准零件的定义只需进行后两步骤。模块划分是模块化设计的第一步。模块划分是否合理,直接影响模块化系统的功能、性能和成本。每一类产品的模块划分都必须经过技术调研并反复论证才能得出划分结果。对于模具而言,功能模块与结构模块是互相包容的。结构模块的在局部范围内可有较大的结构变化,因而它可以包含功能模块;而功能模块的局部结构可能较固定,因而它可以包含结构模块。模块设计完成后,在Pro/E的零件/装配
(Part/Assembly)空间中手工建构所需模块的特征模型,运用Pro/E的用户自定义特征功能,定义模块的两项可变参数:可变尺寸与装配关系,形成用户自定义特征 (User-Defined Features,UDFs)。生成用户自定义特征文件(以gph为后缀的文件)后按分组技术取名存储,即完成模块库的建立。
1、部分大断面空心型材模具的优化
断面空心比较大的空心型材在常规设计情况下,常出现大面起波,平面间隙超差,明显焊缝等缺陷,出现这些问题,通常是缘于模具设计结构的不合理性。为此,笔者在模具设计上:上模采用偏桥,下模在料仓内加凸筋的设计方案。
由于在生产过程中,型材大面起波、平面间隙超差等缺陷-般是因为大面分流孔接近中心,金属流速快而引起的,因此在焊合室中大面模孔前置一适当长度的凸筋,这样,当金属流向模孔时,凸筋象一道矮墙对金属的流动起到阻碍作用,若阻碍作用太过,也便于修模。
同时,相应地对某些焊缝的质量也起到了优化作用。
对于一些矩形腔,长宽比比较大的方管型材,焊合线常明显的出现在大面装饰面上。现可将对称式桥改为偏桥式,焊缝是由于金属流动通过分流孔在分流桥下进入摸孔前没有得到充分焊合而形成的。获得高强优质焊缝当然是我们理想所在。但是如果在生产过程中,焊缝不可避免的出现在型材大面或装饰面上,那不妨使其尽量远离大面或装饰面。在如(图1-2)形式分流孔情况下,使模桥中线向外偏移,(a:b=2:1、a1=a2)。通常,由于大面分流孔中的金属流动速度快,当分流桥的形式设计为偏桥式时,这样,增加了大面分流孔中的料流向两侧填充的空间,且随着分流桥中心线的向外偏移,则料流焊台位置也随之外移。因此,这样即调整了大面金属流速,又使焊缝远离中心大面。
2、双模孔易偏壁空心型材模具的优化
通常情况下,无论两模孔是上下排放,还是左右排放,都会由于靠近中心一侧的金属流速快,供料充足而使上模模芯向外发生弹性变形造成型材远离中心一则壁薄的偏壁缺陷。因此在模具设计过程中,在型材断面尺寸放量时,将通常产生偏壁的断面尺寸预先留出偏移余量。如果两模孔共用中心分流孔,为了两模孔的供料保证相对稳定,在料仓中两孔中间位置可以加一隔板式分流筋,也有利于修模。
3、小开口、悬壁面积大的平面型材模具的优化
此种型材在通常全面直给料的平面模设计情况下,很容易出现悬臂弹性变形大,以至于发生断裂、掉块等情形。此种情况下,可以将其设计成吊芯模,只是修模不很容易。有些型材开口非常小,几乎闭合,此种可采用组合模式,但开口处需要配合紧密。
一般的开口小,恳臂面积大的平面型材可将直给供料板设计为桥式供料板或悬壁桥式供料板、将受力的悬壁面置于桥下,这样可以对型材悬臂进行保护,当金属料流填充模孔时,来自供料板的金属流通过桥式供料板的桥对悬臂的遮挡不用直接作用其上,即减轻了模具悬臂所承受的正压力,从而改善悬臂的受力状态。延长了模具的使用寿命。
4、长厚比比较大的长断面平面型材模具的优化设计
因型材长厚比比较大,壁厚有时比较薄,靠近中心的金属流速比较快,仅仅用工作带的长短来调整模孔各处的料流速度是有限的,所以易产生变形缺陷。现采用(图4-2)所示的桥式供料饭,这样可以有效的调整中间的金属流速,从而使模孔各处料流速度均衡,能够收到良好效果。
5、结论
金属在热挤压时的粘性效应和 挤压速度对优化目标参数的影响,用刚粘塑性有限元法,对铝的热挤压模具的半模角和挤压速度进行了优化。结果指出,采用半模角为65~70°的锥形模比采用 半模角为90°的平面模的挤压效果好,它能降低挤压力,既得到均匀组织和良好机械性能的制品,也满足约束条件。
实践证明,以上几种铝型挤压模具设计的优化在实际生产中都是行之有效的。挤出的铝合金型材较之过去相比,成形好、尺寸精度、易保证、表面质量也得到了良好的改善。从而,大大提高了型材挤压的生产效率和降低了产品生产成本。
对于铝型材产品挤压模具设计,随着社会各行业的飞速发展,型材断面形状随之复杂化、多样化,按常规常见形式设计,存在许多不足。所以,要得到优质型材,就得在生产、生活中不断地学习、积累,不断地改造和创新。